比特币算法那么复杂吗为什么不能用比特币算法那么复杂吗为什么不能用电脑

老铁们,大家好,相信还有很多朋友对于比特币算法那么复杂吗为什么不能用和比特币算法那么复杂吗为什么不能用电脑的相关问题不太懂,没关系,今天就由我来为大家分享分享比特币算法那么复杂吗为什么不能用以及比特币算法那么复杂吗为什么不能用电脑的问题,文章篇幅可能偏长,希望可以帮助到大家,下面一起来看看吧!

本文目录

比特币到底是怎么回事比特币算法原理比特币的真正用途高中生如何理解比特币加密算法比特币到底是怎么回事比特币(BitCoin)的概念最初由中本聪在2009年提出,根据中本聪的思路设计发布的开源软件以及建构其上的P2P网络。比特币是一种P2P形式的数字货币。

比特币算法原理比特币算法主要有两种,分别是椭圆曲线数字签名算法和SHA256哈希算法。

椭圆曲线数字签名算法主要运用在比特币公钥和私钥的生成过程中,该算法是构成比特币系统的基石。SHA-256哈希算法主要是运用在比特币的工作量证明机制中。

比特币产生的原理是经过复杂的运算法产生的特解,挖矿就是寻找特解的过程。不过比特币的总数量只有2100万个,而且随着比特币不断被挖掘,越往后产生比特币的难度会增加,可能获得比特币的成本要比比特币本身的价格高。

比特币的区块由区块头及该区块所包含的交易列表组成,区块头的大小为80字节,由4字节的版本号、32字节的上一个区块的散列值、32字节的MerkleRootHash、4字节的时间戳(当前时间)、4字节的当前难度值、4字节的随机数组成。拥有80字节固定长度的区块头,就是用于比特币工作量证明的输入字符串。不停的变更区块头中的随机数即nonce的数值,并对每次变更后的的区块头做双重SHA256运算,将结果值与当前网络的目标值做对比,如果小于目标值,则解题成功,工作量证明完成。

比特币的本质其实是一堆复杂算法所生成的一组方程组的特解(该解具有唯一性)。比特币是世界上第一种分布式的虚拟货币,其没有特定的发行中心,比特币的网络由所有用户构成,因为没有中心的存在能够保证了数据的安全性。

比特币的真正用途比特币本身没有任何使用价值,吹上天的加密,不会被破解也没有。人类既然能制造出比特币,也能制造出第二比特币,第三比特币,和比特币

美股股权收益率多少

毫区别。所以说比特币就是被吹上天的牛逼。

要说比特币没价值也不全对,它现在有一个实用价值,那就是成为黑市犯罪资金链。不过这种资金链应该也不会长久,因为后面还会有比它更牛逼的“加密货币”。毕竟人类是在发展

比特币是区块链技术杰出的作品,也是价值互联网的代表作。比特币的POW(工作量证明)成就了矿工的新职业,比特币的透明的总量、明确的年产量又决定了它的抗通胀能力,去中心化的管理让比特币无法被单人或机构操控,点对点的交易规则可以让交易更快捷,区块链不可篡改的记账模式又会保证每一笔交易的真实可查。

比特币之所以价值陡升,因为它的交易更安全、更高效、更无地域和种族限制,使用比特币交易可以跨过各个金融机构的中心服务器,避免了因交易高峰或系统维护导致交易失败,同时每个比特币节点都有完整的交易账本,即保证了记录不会被黑客篡改,同时在查询交易明细不需再去找相关部门申请。

比特币减少了交易的相关机构(银行、银联等中心机构),提高了交易效率,当然也减少了交易成本(人力成本和资源成本),因其遍布全球,且区块链的安全性和稳定性有目共睹,所以越来越多的人开始认可比特币,认可即价值。有些人开始把比特币看作是电子黄金。因为稀缺和产量固定、因为便于携带不被偷窃、因为有些商店接受比特币支付,所以比特币的价值在自身的优势和人们的认可中日益增长。

需要注意的是,比特币虽然如此被人们看好,但它未必是最优秀的数字货币。比特币的价格也存在泡沫和炒作,所以不管是投资比特币还是成为比特币矿工,都要谨慎。

高中生如何理解比特币加密算法加密算法是数字货币的基石,比特币的公钥体系采用椭圆曲线算法来保证交易的安全性。这是因为要攻破椭圆曲线加密就要面对离散对数难题,目前为止还没有找到在多项式时间内解决的办法,在算法所用的空间足够大的情况下,被认为是安全的。本文不涉及高深的数学理论,希望高中生都能看懂。

密码学具有久远的历史,几乎人人都可以构造出加解密的方法,比如说简单地循环移位。古老或简单的方法需要保密加密算法和秘钥。但是从历史上长期的攻防斗争来看,基于加密方式的保密并不可靠,同时,长期以来,秘钥的传递也是一个很大的问题,往往面临秘钥泄漏或遭遇中间人攻击的风险。

上世纪70年代,密码学迎来了突破。RalphC.Merkle在1974年首先提出非对称加密的思想,两年以后,WhitfieldDiffie和WhitfieldDiffie两位学者以单向函数和单向暗门函数为基础提出了具体的思路。随后,大量的研究和算法涌现,其中最为著名的就是RSA算法和一系列的椭圆曲线算法。

无论哪一种算法,都是站在前人的肩膀之上,主要以素数为研究对象的数论的发展,群论和有限域理论为基础。内容加密的秘钥不再需要传递,而是通过运算产生,这样,即使在不安全的网络中进行通信也是安全的。密文的破解依赖于秘钥的破解,但秘钥的破解面临难题,对于RSA算法,这个难题是大数因式分解,对于椭圆曲线算法,这个难题是类离散对数求解。两者在目前都没有多项式时间内的解决办法,也就是说,当位数增多时,难度差不多时指数级上升的。

那么加解密如何在公私钥体系中进行的呢?一句话,通过在一个有限域内的运算进行,这是因为加解密都必须是精确的。一个有限域就是一个具有有限个元素的集合。加密就是在把其中一个元素映射到另一个元素,而解密就是再做一次映射。而有限域的构成与素数的性质有关。

前段时间,黎曼猜想(与素数定理关系密切)被热炒的时候,有一位区块链项目的技术总监说椭圆曲线算法与素数无关,不受黎曼猜想证明的影响,就完全是瞎说了。可见区块链项目内鱼龙混杂,确实需要好好洗洗。

比特币及多数区块链项目采用的公钥体系都是椭圆曲线算法,而非RSA。而介绍椭圆曲线算法之前,了解一下离散对数问题对其安全性的理解很有帮助。

先来看一下费马小定理:

原根定义:

设(a,p)=1(a与p互素),满足

的最下正整数l,叫作a模p的阶,模p阶为(最大值)p-1的整数a叫作模p的原根。

两个定理:

基于此,我们可以看到,{1,2,3,…p-1}就是一个有限域,而且定义运算gi(modp),落在这个有限域内,同时,当i取0~p-2的不同数时,运算结果不同。这和我们在高中学到的求幂基本上是一

6.10隔夜美股最新行情

样的,只不过加了一层求模运算而已。

另一点需要说明的是,g的指数可以不限于0~p-2,其实可以是所有自然数,但是由于

所以,所有的函数值都是在有限域内,而且是连续循环的。

离散对数定义:

设g为模p的原根,(a,p)=1,

我们称i为a(对于模p的原根g)的指数,表示成:

这里ind就是index的前3个字母。

这个定义是不是和log的定义很像?其实这也就是我们高中学到的对数定义的扩展,只不过现在应用到一个有限域上。

但是,这与实数域上的对数计算不同,实数域是一个连续空间,其上的对数计算有公式和规律可循,但往往很难做到精确。我们的加密体系里需要精确,但是在一个有限域上的运算极为困难,当你知道幂值a和对数底g,求其离散对数值i非常困难。

当选择的素数P足够大时,求i在时间上和运算量上变得不可能。因此我们可以说i是不能被计算出来的,也就是说是安全的,不能被破解的。

比特币的椭圆曲线算法具体而言采用的是secp256k1算法。网上关于椭圆曲线算法的介绍很多,这里不做详细阐述,大家只要知道其实它是一个三次曲线(不是一个椭圆函数),定义如下:

那么这里有参数a,b;取值不同,椭圆曲线也就不同,当然x,y这里定义在实数域上,在密码体系里是行不通的,真正采用的时候,x,y要定义在一个有限域上,都是自然数,而且小于一个素数P。那么当这个椭圆曲线定义好后,它反应在坐标系中就是一些离散的点,一点也不像曲线。但是,在设定的有限域上,其各种运算是完备的。也就是说,能够通过加密运算找到对应的点,通过解密运算得到加密前的点。

同时,与前面讲到的离散对数问题一样,我们希望在这个椭圆曲线的离散点阵中找到一个有限的子群,其具有我们前面提到的遍历和循环性质。而我们的所有计算将使用这个子群。这样就建立好了我们需要的一个有限域。那么这里就需要子群的阶(一个素数n)和在子群中的基点G(一个坐标,它通过加法运算可以遍历n阶子群)。

根据上面的描述,我们知道椭圆曲线的定义包含一个五元祖(P,a,b,G,n,h);具体的定义和概念如下:

P:一个大素数,用来定义椭圆曲线的有限域(群)

a,b:椭圆曲线的参数,定义椭圆曲线函数

G:循环子群中的基点,运算的基础

n:循环子群的阶(另一个大素数,<P)

h:子群的相关因子,也即群的阶除以子群的阶的整数部分。

好了,是时候来看一下比特币的椭圆曲线算法是一个怎样的椭圆曲线了。简单地说,就是上述参数取以下值的椭圆曲线:

椭圆曲线定义了加法,其定义是两个点相连,交与图像的第三点的关于x轴的对称点为两个点的和。网上这部分内容已经有很多,这里不就其细节进行阐述。

但细心的同学可能有个疑问,离散对数问题的难题表现在求幂容易,但求其指数非常难,然而,椭圆曲线算法中,没有求幂,只有求乘积。这怎么体现的是离散对数问题呢?

其实,这是一个定义问

香港股市节日休市

题,最初椭圆曲线算法定义的时候把这种运算定义为求和,但是,你只要把这种运算定义为求积,整个体系也是没有问题的。而且如果定义为求积,你会发现所有的操作形式上和离散对数问题一致,在有限域的选择的原则上也是一致的。所以,本质上这还是一个离散对数问题。但又不完全是简单的离散对数问题,实际上比一般的离散对数问题要难,因为这里不是简单地求数的离散对数,而是在一个自定义的计算上求类似于离散对数的值。这也是为什么椭圆曲线算法采用比RSA所需要的(一般2048位)少得多的私钥位数(256位)就非常安全了。

好了,文章到此结束,希望可以帮助到大家。